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I. INTRODUCTION

The purpose of this document is to provide information on the applicability of the
results produced by Ultramarine’s software, MOSES, to “real world” problems. We
begin by considering some simple problems where exact solutions are available. Many
problems of interest, however, are not amenable to such checks. For these cases, we
turn to comparisons with model tests and/or other computed results.

Although not strictly applicable, it should be mentioned that MOSES has been
around in some incarnation since the late 1970’s and it has been used on hundreds of
projects. This is, perhaps, the best statment for the accuracy and reliability of the
results it produces.

Because of the range of problems our software can solve, it is impossible to compare
everything. What we have here are enough comparisons to establish that the “ba-
sic ingredients” function properly. Thus, they give comfort that MOSES functions
properly for a much wider class of problem than covered here.

The document finishes with a description of our Quality Assurance procedures. In
essence, these procedures are designed to minimize the chance of errors creeping into
the software during the maintenance process.
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II. REGULARATORY APPROVAL

One of the questions we are continually asked about is whether or not MOSES is
approved by some regulatory bodies such as ABS or DNV. The answer to this is
no, regulatory bodies, in general, approve result and designs, not software. Since
MOSES has been in constant use for decades, literally hundreds of results have been
approved by various regulatory bodies. Never have we heard of a case where a design
or analysis was rejected because of the software used.

One exception that we know of to the above rule is that the Norweign Petroleum
Directoriat did (or does) approve combinations of organizations and software to per-
form mooring and stability calculations. There are several organizations - MOSES
combinations which have been aproved.
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III. PERIODIC MOTION

In this section we investigate two cases of periodic motion which can be compared
with exact solutions. A simple spring-mass system is considered first, and then we
look at the large motion of a pendulum. The primary objective is to examine how
well time domain problems can be solved. In particular, is appreciable numerical
damping induced into the solution, and are the nonlinearities properly accounted
for. The two samples chosen also address the question of how well flexible and rigid
connections function in the time domain.

The first test consists of a spring, modeled by a vertical bar with a Young’s modulus
of 10 kips/in2, length of 100 ft., and a constant circular cross section of 1 ft. diameter.
The block has a weight of 1000 kips as is shown in Figure 1. To initiate the motion,
the mass was displaced by 10 ft. in the positive z-direction and released.

Figure 1: Setup for Spring Vibration

For uniaxial deformation, the deflection of the bar under load P is

δ =
PL

AE
, (III.1)

and the spring constant is

k =
P

δ
=
AE

L
. (III.2)
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The quantities verified are the natural frequency, the force needed to stretch the
spring 10 ft., and the stretched length of the spring with a 1000 kip block. The force
required to change the length of the bar 10 ft. can be determined by solving (III.1)
for P ,

P =
δEA

L
(III.3)

which for a δ = 10ft and the bar particulars given above results in P = 113.09 Kips.
The natural frequency and period of the system are given by

ωn =

√
k

m
, and (III.4)

T =
2π

ωn

. (III.5)

Using these equations with the spring constant of 11.3 kips/ft given by (III.2) yields
a natural period of 10.37 sec. The stretched length of the spring corresponds to
the average length of the spring during oscillation. In Figure 2 we show the mean
oscillation being about z=-89 ft. Recalling that the spring is 100 ft. long at z=0 ft.
will conclude that the springs stretched length is 189 ft. Again using (III.1) with
the weight of the block gives the stretched length of the bar to be 88.5 ft. from its
z=0 ft. position.

Below we present the comparison of hand calculated values to those from MOSES.
As can be seen there is a good comparison between the force needed to move the
block to z=10 ft., the natural period, and the stretched length. The force to move
the block to z=10 ft. was taken from the MOSES status report, the mean z-location
was taken from the statistics of the block motion, and the natural period was taken
from the plot of oscillatory motion for 100 sec. Finally, notice that the numerical
integration did not induce any perceptible error.

Comparison of Exact Solution and MOSES for Spring-Mass System

Quantity units Hand MOSES

Force to move to z=10 ft. kips 113.00 113.00
Natural period sec. 10.41 10.40
Z-Mean ft. 88.50 88.42

Next we consider the large angular motion of a pendulum. This is by far the more
interesting of the two tests, since the governing equation is nonlinear. The system
consists of a 100 ft. bar of constant section, hinged at one end. The bar is initially
rotated 90 degrees and released.
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Figure 2: Vibration of Spring-Mass System

The equation of motion for the pendulum in terms of the angle, θ, mass, m, length
of bar, l, and moment of inertia, Io is

θ̈ + ω2 sin θ = 0 , (III.6)

where

ω2 =
3g

2l
, (III.7)

and g is the acceleration of gravity. The period for motion satisfying this equation is
an elliptic integral and can be represented as

T =
2

π
K(2πω) (III.8)

where K is dependent on the initial amplitude. For 90 degrees K = 1.854 which
yields a period of T = 10.66 sec. As can be seen from Figure 3 the computed results
have a period which is the same as the predicted value. It is also worth noting the
plateaus in the acceleration vs. time plot shown in Figure 4. The motion here is
certainly not described by a cosine.

MOSES Verification Page 5



Sample Of a Simple Pendulum
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Figure 3: Oscillation of Pendulum Motion
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Figure 4: Acceleration of Pendulum Motion
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IV. PLATE DEFORMATION

In this section we consider the deformation of a cantelever plate due to uniaxial
loading and pure bending. The deformation of the cantelever is simple enough so that
MOSES results can be easily compared. We considered three plate models. In all
three models the main dimensions of the cantelever remained the same, however the
refinement of the sections considered was changed. This example not only illustrates
how the plate element is used, but demonstrates how accuracy is increased with
detail.

There were three models considered: a single plate, a plate refined along the y-axis,
and a plate refined along both the y-axis and the x-axis. For all three cases there
was an axial force in the negative x-direction, a shear load in the negative z-direction
and a shear load in the negative y-direction. These three cases are shown in Figure
5. The dimensions of the plate are length of 10 ft., width of 4 ft., and thickness of 1
in.

The equations that govern the deformation of the plate are:

δx =
f`

EA
,

δy =
P`3

3EIyy

,

δz =
P`3

3EIzz

, (IV.1)

where

A = wt ,

Iyy =
tw3

12
, and

Izz =
wt3

12
. (IV.2)

The comparison of MOSES values to hand calculated values is shown in below. An
important thing to notice about these results is the dramatic improvement of δy with
refinement. A single plate element is simply incapable of representing global bending
due to membrane stresses.
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Plate Deformation with Different Models

Hand MOSES MOSES MOSES
Calculations Uniform Sliced Diced

δx (in.) 0.086 0.086 0.086 0.087
δy (in.) 0.215 0.058 0.162 0.235
δz (in.) 4.966 4.646 4.928 4.768

Figure 5: Plate refinement models
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V. HOOP STRESS IN A CYLINDER

In this section, we will investigate how well MOSES computes the hoop stresses in
a thin-walled cylindrical shell due to external pressure. Here, we consider a cylinder
with the radius r=31.5 ft., thickness t=1 in., and total length `= 300 ft. The cylinder
was submerged 295 ft. with no trim or heel.

Since MOSES employs a finite element method, the answer will depend on how
accurately we model the cylinder. Thus, results for four models were obtained: two
models with the nodes on the perimeter of the cylinder and two with a distance from
the center that preserves the area. For each scheme of placing the nodes, models
of 8 and 16 plates around the circumference were created. Plots of the modes are
shown below. Notice that to preserve the area, a different distance is needed for each
number of plates:

d =

√√√√ 2πr2

n sin(2π
n

)

For the r we have, this corresponds to d=33.2 ft. for 8 plates and d=31.91 ft. for 16
plates. Figures 6 through 8 show the geometric difference in detail.

Figure 6: Top View of Simple Models

The ”standard results” are given by:

σr = 0 ,
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Figure 7: Top View of Detail Models

Figure 8: Side View of Detail Models
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σθ =
Pr

t
,

σz =
Pr

2t
,

P = −ρgh . (V.1)

Here, σr is the radial stress, σθ is the tangential stress, σz is the longitudinal stress,
r is the inner radius, t is the shell thickness, P is the pressure, ρ is the density of
water, g is the gravitational constant, and h is the water depth of the point being
measured.

Membrane Stess of a Thin Walled Cylindrical Shell

σθ σz

Standard Formulae -49.35 -24.68
8 Plates on Perimeter -43.93 -21.37
8 Plates Preserve Area -46.28 -22.52
16 Plates on Perimeter -47.65 -23.49
16 Plates Preserve Area -48.26 -23.80

It is interesting that the results for the equivalent area models are substantially better
than the ones from the perimeter models. Also, the results are surprisingly close for
such crude models.
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VI. STRESS CONCENTRATION OF A CIRCULAR HOLE

In this section we consider the stress concentration factor for a circular hole in a plate
subjected to ”uniform” tension. Figure 9 shows the plates as defined and Figure 10
shows the refined mesh of 2732 nodes which is actually used to solve for the stresses
around the hole.
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Figure 9: Original Model

Loads are applied to the left edge of the model and the right edge of the model is
restrained. The total load applied is 1200 kips and this yields a nominal stress of 3.33
ksi. Figure 11 shows the stress distribution around the hole. The maximim stress
here is 10.08 giving a stress concentration factor of 3.02 which compares quite nicely
with the correct value of 3.
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Figure 10: Refined Model
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VII. GENERALIZED DEGREES OF FREEDOM

MOSES’s generalized degrees of freedom was designed to solve problems that really
are not solvable by any other means, and as a result, this capability is not easy to
check. Our approach here is to construct an estimate of the solution to a problem,
check the estimate where it can be checked, and then compare it with MOSES. In
particular, we want to solve a ”flag pole”, a vertical beam with a weight on top,
and we will compare the MOSES results to this problem with a standard energy
approximation; i.e. we will look at energy in the beam system:

K =
ρ

2

∫ `1+`2

0
ẋ2 dz +

1

2

W

g
ẋ(`1 + `2)

2 ,

V1 =
1

2
EI

∫ `1+`2

0
(x′′)2 dz ,

V2 ≈ −W
2

∫ `1+`2

0
(x′)2 dz and

W =
∫ `1+`2

0
F (z)x dz . (VII.1)

Here, the first term of K is the kinetic energy of the beam itself, the second is the
kinetic energy of the weight on the top, V1 is the strain energy due to bending the
beam, V2 is the potential energy due to the weight at the top, and W is the work
done by forces acting along the beam. We will consider the beam to be ”pinned” at
z = 0 and z = `1, so we really have a two span beam which approximates a cantilever
when `1 is small in comparison to `1 + `2.

Now, assume x(z) is a function with continuous derivatives, satisfies the boundary
conditions, and depends on a single parameter δ, the value at z= `1 + `2. Then

K = −1

2
(δ̇)2

(
ρ
∫ `1+`2

0
x2 dz +

W

g

)
≡ 1

2
(δ̇)2M ,

V1 =
1

2
(δ)2EI

∫ `1+`2

0
(x′′)2 dz ≡ 1

2
(δ)2K1 ,

V2 =
1

2
− (δ)2(W

∫ `1+`2

0
(x′)2 dz ≡ −1

2
(δ)2 1

2
K2 and

W = δ

(
Fo +

∫ `1+`2

0
fx2 dz

)
≡ δ(Fo + C) . (VII.2)

Here, Fo is a force applied at the top of the beam and C is a contribution due to a
force, f , acting along the beam.

If we now look at conservation of energy, we get an equation

K + V1 + V2 =W (VII.3)
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which, if we use (VII.3) and differentiate with respect to time, yields

Mδ̈ + (K1 −K2)δ=Fo + C .

Now, let us assume that δ, Fo, and C are harmonic in time with frequency ω, which
will reduce the above equation to an algebraic one:

−ω2δM + (K1 −K2)δ=Fo + C

or

δ=
Fo + C

[−ω2M + (K1 −K2)]
. (VII.4)

If we have computed the integrals K1, K2, C, and M then (VII.4) provides an
estimate of the deflection at the top of our beam.

Before attaching the integrals, let us first look at some special cases of verify:1. First,
notice that it does not have a solution when

ω2 =
K1 −K2

M

which gives us an estimate of the natural frequency of the beam. Also, notice that
when C = 0 and ω = 0, it yields

δ=
Fo

(K1 −K2)

which is the static deflection due to a load applied at the top. These two results will
be used to check the accuracy of this approximation. Since (VII.4) has a singularity
at the natural period, we will alter it slightly with a bit of damping

δ=
Fo + C√

[−ω2M + (K1 −K2)]
2 + 4η2(K1 −K2)M

. (VII.5)

We are still free to chose any x which satisfies the boundary conditions:

x(`1) = 0
lim

z→`+1

x′(z) = lim
z→`−1

x′(z)

x′′(`1) = 0
x(`1 + `2) = 1
x′′(`1 + `2) = 0 . (VII.6)

Our choice is the static deflection under a top load:

x=

{
αz + βz3, z ≤ `1;
γ(z − `1) + ψ(z − `1)

2 + ζ(z − `1)
3, z > `1

(VII.7)
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where the parameters α, β, γ, ψ,and ζ can be determined from the above boundary
conditions.

The particular problem we consider is a tube with:

`1 = 10 meters,
`2 = 90 meters,
W = 100 kilo-newtons,
Fo = 10 kilo-newtons, (VII.8)

and which has a diameter of 1 meter and a thickness of 25 millimeters. The buoyancy
of the tube was chosen to be equal the weight so that we did not have to include the
potential energy of either the weight or the buoyancy of the tube in our equation.
When the tube is in the water, the density used above includes both the density
of the steel in the tube and the added mass. Also, the integral C is the Morison’s
equation inertia force due to wave particle acceleration.

Comparing the results of our approximation with the results from a stress analysis
we find

Comparison of Energy Approximation with Structural Analysis

Quantity units W Structural Energy App.

Deflection due to Fo Meters 0. 1.484 1.484
Deflection due to Fo Meters 10. 1.484 1.836
Natural period in Air sec. 0. .476 .468
Natural period in Water sec. 0. 12.785 12.920
Natural period in Water sec. 10. 12.785 14.220

These comparisons are interesting. First, the comparisons with W = 0 are excellent,
but those for a nonzero weight are not so good. This is due to the fact that the
structural analysis we are comparing with is linear; i.e. the effect of the weight on
the stiffness is not accounted for. Thus, for these cases the estimate is itmore correct
than the stress analysis.

Since the estimate is reasonably reliable, we can turn to a comparison of the results
from MOSES generalized coordinates and the estimate. We first computed three
modes of the beam in water using the pin connections and then used these as gen-
eralized coordinates. The following two figures show a comparison of the results
both with a weight and without. As you can see, MOSES does quite a nice job of
predicting the response including the nonlinearities.

One must be a bit careful using generalized coordinates. Above, we had a set of
modes which exactly satisfied the boundary conditions. To show what can happen
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if you do not have a ”good set” of modes, we also solved the same problem with a
”bad” set of modes. These ”bad” modes are backward; i.e. they correspond to a
beam fixed at the top! The second set of figures show the results using two of these
modes and twenty of them. As you can see, with two modes, you have a really bad
estimate of the deformation, while with twenty it is not so bad.

Figure 12: Frequency Response with No Weight

MOSES Verification Page 18



Figure 13: Frequency Response with Weight

Figure 14: Two ”Bad” Modes
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Figure 15: 20 ”Bad Modes
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VIII. BEAM RESIZING

In this section we present the beam resizing option. Several examples illustrating
how the algorithm works are included as samples of MOSES to show the procedure
used for resizing. All resizing samples are taken from classic textbook examples. A
brief explanation of each sample follows.

Gaylord and Gaylord, Design of Steel Structures, Example 5-12, DP5-2: Crane for
shop building. Given the length and the load of the bridge and the girder, determine
the size of the beams needed.
Root filename: resiz1

Salmon and Johnson, Steel Structures Design and Behavior, Example 15.4.1. Design
a rectangular frame of 75-ft. span and 25-ft. height to carry a gravity uniform load
of 1.0 kip/ft. when no lateral load is acting.
Root filename: resiz2

AISC Manual of Steel Construction beam Examples 1-3, p. 2-5 through 2-6. Design a
beam subjected to a given bending moment and a specific compressions flange brace
intervals.
Root filename: resiz3

AISC Manual of Steel Construction beam Example 1, p. 3-4. Given a concentric
load and the effective length with respect to the minor axis, determine the size of the
beam needed.
Root filename: resiz4

AISC Manual of Steel Construction beam Example 10, p. 2-147. Given the load on
a girder, the distance from the ends reaction points, and the moment at the center,
determine the girder size.
Root filename: resiz5

The user is asked to use the samples provided and the references to supplement this
section of the verification manual.
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IX. SIMPLE HYDROSTATICS

In this section, we consider the hydrostatic properties of two simple bodies, a cube
and a tube. These bodies are simple enough so that exact calculations can be made,
and MOSES uses two different algorithms for the two cases. Thus, they provide an
excellent check of the hydrostatics for any body.

The cube was considered in three positions: trimmed, heeled, and both trimmed and
heeled. The side of the cube has length of ` = 50ft., and a draft T which is measured
perpendicular to the waterplane from the deepest submerged point of the body. The
equations for the center of buoyancy for the trimmed position and for the heeled
position were derived from the center of mass equations of a wedge.

The equations for the center of buoyancy and displacement in a trimmed position are
as follows:

Xcb =
2T

3 sinφ
,

Ycb =
1

2
l ,

Zcb =
T

3 cosφ
, and

∆ = ρl
T 2

sin 2φ
. (IX.1)

For a heeled position, the equations become:

Xcb =
1

2
l ,

Ycb =
2T

3 sin θ
,

Zcb =
T

3 cos θ
, and

∆ = ρl
T 2

sin 2θ
. (IX.2)

The equations for the center of buoyancy of a trimmed and heeled box are more
complicated since two rotations are taking place. It is simple to see that the volume
of a cube for a draft, T ≤ l sin θ cosφ which has been rotated about the y-axis by an
angle θ then rotated about the x-axis an angle φ will resemble a tetrahedron. The
following equations determine the center of buoyancy and the

Xcb = l− T

4 sinφ
,
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Ycb =
T

4 cosφ cos θ
,

Zcb = l− T

4 cosφ sin θ
, and

∆ =
ρT 3

(1000)(6) sinφ cos2 φ sin θ cos θ
. (IX.3)

The coordinate systems are shown in Figures 16, 17 and 18. The global coordinate
system with its x-y plane on the waterplane is shown as the coordinate system with-
out primes, and the body coordinate system belonging to the cube is shown as the
coordinate system with primes.

Figure 16: Side View of Cube Position 1

These equations were used to compute the center of buoyancy and the displacement
of the cube for the three positions.
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Figure 17: Front View of Cube Position 2

Figure 18: Isometric View of Cube Position 3
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Comparison of Hydrostatics of a Cube

Position Draft Trim Roll Method ∆ Xcb Ycb Zcb

ft. Deg Deg Kips ft. ft. ft.

1 25.00 30 00 Hand 2309.40 33.33 25.00 9.63
MOSES 2309.40 33.33 25.00 9.62

2 35.35 00 45 Hand 4000.00 25.00 33.33 16.67
MOSES 4000.00 25.00 33.33 16.67

3 30.61 30 45 Hand 889.12 37.50 39.79 10.21
MOSES 889.80 37.50 39.79 10.21

Next, we consider the hydrostatics of a tube in three conditions. The tube is 50 ft.
long with a radius of 5 ft. Here θ is a pitch angle measured from the global z-axis
to the body z’-axis. For these tests, draft is defined as the vertical distance from the
body coordinate system to the mean water level. The geometry is shown in Figure
19, and body coordinate system is denoted as the x’-z’ axis.

Figure 19: Coordinate System for Buoyancy of a Tube

The buoyancy and its center are determined by integration of the following equations:

v =
∫

S
dv
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∆ = ρgv

Xcb =
1

v

∫
S
x dv

Ycb =
1

v

∫
S
y dv

Zcb =
1

v

∫
S
z dv (IX.4)

Here, S is the submerged portion of the tube. The comparison for three cases is:

Comparison of Hydrostatics of a Tube

Position Draft Trim Roll Method ∆ Xcb Ycb Zcb

ft. Deg Deg Kips ft. ft. ft.

1 34.64 00 30 Hand 201.09 0.18 0.00 20.09
MOSES 201.06 0.09 0.00 20.03

2 0.00 60 00 Hand 9.24 2.55 0.00 2.98
MOSES 9.24 2.50 0.00 2.95

3 0.00 80 00 Hand 30.25 2.92 0.00 8.40
MOSES 30.25 2.95 0.00 8.35
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X. STRIP THEORY HYDRODYNAMICS

In this section, we compare the RAOs of a barge from a study conducted by Noble
Denton and Associates Ltd. [1] and those computed by MOSES using strip theory.
The model studied is a deck barge of dimensions depicted in Figure 20, with a KG
of 32 ft.

Comparison of MOSES Strip Theory w/Model Tests
Event 1.0

Figure 20: Barge Particulars

The comparisons are shown in Figures 21 to 26. The Noble Denton report consisted
of RAO curves with an average of 5 data points per degree of freedom. The data
points were from measurements of a 1:30 ratio model in regular waves for head and
beam seas. Surge and heave motions were recorded for head seas and sway, heave,
and roll motions were recorded for beam seas. The points recorded by Noble Denton
are indicated in each curve by circles. Points with a “W” indicate that for this test,
the deck of the barge was awash.

The MOSES curves were calculated with a wave steepness of 1/20. As seen from
these figures, most of the computed RAOs compare quite well with those from the
model test. The only exception is the roll RAOs, in which case the computed results
deviate from the test results near resonance. This is due to nonlinear roll damping
which causes the response near resonance to be greatly affected by the wave steepness.
To address this nonlinearity, roll response curves were calculated for a range of wave
steepnesses. These results are shown in Figure 26. In this figure, the MOSES results
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are shown with wave steepness decreasing from 1/133 to 1/33. These wave steepnesses
were chosen in order to correspond with those steepnesses tested by Noble Denton.
The graph shows an agreement between test measurements and MOSES results.

Moses
Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Head Seas
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Figure 21: Comparison of Surge RAO in Head Seas
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Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Head Seas
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Figure 22: Comparison of Heave RAO in Head Seas
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Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Head Seas
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Figure 23: Comparison of Pitch RAO in Head Seas
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Moses
Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Beam Seas
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Figure 24: Comparison of Sway RAO in Beam Seas
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Comparison of MOSES Strip Theory w/Model Tests
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Figure 25: Comparison of Heave RAO in Beam Seas
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Moses Roll S33
Moses Roll S52
Moses Roll S75
Moses Roll S133
Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Beam Seas
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Figure 26: Comparison of Roll RAO in Beam Seas

MOSES Verification Page 31



XI. THREE DIMENSIONAL DIFFRACTION HYDRODY-
NAMICS

In this section, we will examine three dimensional diffraction results for semisub-
mersible vessel motions, comparing MOSES to the NSMB motions programs and
to the model test results taken at NSMB [3]. It should be noted that NSMB, an
acronym for Netherlands Ship Model Basin, is the former name for MARIN, Mar-
itime Research Institute Netherlands.

The vessel used was the semisubmersible crane vessel Balder, with length, breadth
and depth dimensions of 118 x 86 x 42 meters, respectively, at a 22.5 meter draft.
Before comparison, the differences in the mathematical and test basin models should
be noted. The displacement computed by MOSES was 3.3 percent greater than
either NSMB model, and the MOSES KG was 1.87 meters lower than NSMB’s. The
KG shift was necessary in order to achieve equivalent transverse GM values. These
indicate different values of waterplane inertia, which cannot be compared since they
were not published in the NSMB report. Figures 27 illustrates the hydrostatic model
used by MOSES.

Figure 27: Isometric view of mesh model

This mesh was automatically refined by the program to generate a detailed mesh for
hydrodynamics, as seen in Figure 28 Imposing a constraint that the maximum panel
side be less than four meters resulted in a diffraction mesh of 1130 panels. For the
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MOSES analysis, viscous damping was introduced by Morison tubular elements which
attract only drag forces. Diameters for these tubulars were chosen to approximate
the cross section of the pontoons and columns.

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft

Event 1.0

Figure 28: Isometric view of detailed mesh model

The response operators for head, quartering, and beam seas are shown in Figures 29
through 36 for periods up to 18 second. The legend in these figures label results from
MOSES (MO), NSMB diffraction program (Nd) and NSMB model tests (Nt). The
labels X, Y, Z, RX, RY refer to surge, sway, heave, roll and pitch, respectively, while
the values of 180, 135 and 90 refer to head seas, quartering seas and beam seas. The
agreement here is excellent.
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MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Head Seas
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Figure 29: Surge comparison in head seas

MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
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Figure 30: Heave comparison in head seas
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MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Head Seas
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Figure 31: Pitch comparison in head seas

MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Quartering Seas
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Figure 32: Roll comparison in quartering seas
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MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Quartering Seas
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Figure 33: Pitch comparison in quartering seas

MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Beam Seas
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Figure 34: Sway comparison in beam seas
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MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Beam Seas
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Figure 35: Heave comparison in beam seas

MOSES RESULTS
NSMB DIFFRACTION
NSMB TESTS

Comparison of MOSES Diffraction w/ Model Tests
Semisubmersible Balder, 22.5M Draft, Beam Seas
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Figure 36: Roll comparison in beam seas
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XII. HORIZONTAL OSCILLATION OF A TANKER

In this section, we compare MOSES predictions for the motions of a tanker on a
single point mooring with those of Wichers [4]. The system consists of a ballasted
200 Kdwt tanker with a 90 m hawser connecting it to the single point. The SPM
system is exposed to 60 knot head winds and a 1.03 m/sec. head current. The
coordinate system used is shown in Figure 37. The global coordinate system is fixed
to earth, and head seas are defined as the environment in the positive x-direction.
Also shown in Figure 37 is the top view of the panel model used for the 200 Kdwt
tanker.

Figure 37: Coordinate system

The MOSES simulation consisted of 1700 sec. at 2 sec. intervals. Figures 38 and 39
show the x and y motions vs. time for: the model tests, the simulation conducted
by Dr. Wichers, and the MOSES simulation. These results are quite interesting in
that we have an unsteady motion of the system in an environment which is constant.
In other words, what we see here is the result of an instability. In view of this, the
closeness of the three results is quite remarkable. Wichers used experimental results
to obtain coefficients in his simulation. For the MOSES simulation, the wind and
current forces were computed using the #tanker load group and nothing else was
done.

Perhaps of even greater interest here is the variation of the tanker yaw angle with
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Figure 38: Comparison of x motions

Figure 39: Comparison of y motions
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time. This is shown in Figure 40.

Figure 40: Yaw motion for Single point mooring
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XIII. WIND AND CURRENT FORCE

In this section, we consider the ways in which MOSEScomputes wind and current
forces. In essence, there are five ways: Morrison’s Equation for a tube (#TUBE),
Morrison’s Equation for a plate (#PLATE), using the panels of a ”Piece” (closed
surface producing buoyancy and hydrodynamics), #TABLE, and #TANKER. The
mathematics of computing the force for the first three load attractors is the same for
wind and for current and for each of the elements. The only difference is in how the
”drag coefficient” vector is defined. In what follows we will use a vector c which, in
general, can be defined as:

c = (Cx, Cy, Cz) (XIII.1)

For both plates and tubes, all values are the same and are specified with a MOSES
&PARAMTER setting. For tubes, the coefficients for wind forces are specified with
-WCSTUBE and for water forces with a Reynolds’ number dependent table specified
with -DRGTUB. For plates, it is specified with -DRGPLA for both wind and water.
For panels, these are defined with the options -CS WIND and -CS CURR on either
the PGEN or PIECE command.

The force on each panel is computed as

f = sq(e·r)e (XIII.2)

Where f is the force vector, e is a unit vector, r is the relative velocity vector , and
s and q are multipliers. Here s is given by

s= .5ρA ‖ r ‖ (XIII.3)

where ρ is the density of of the fluid, A is an area, and the last term is the relative
speed. The multiplier q is given by

q=
∑

i

[c(i)n(i)r(i)] (XIII.4)

where n is the normal to the area and c(i) are the components of the c vector.

The meaning of A and e depend on the current setting of a MOSES parameter
specified with -AF ENVIRONMENT. If you use YES then

e = r/ ‖ r ‖
A = a(n·r)/ ‖ r ‖ (XIII.5)

where a is the area of the panel or diameter times the length of a tube. If NO was
used, then

e = n
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A = a (XIII.6)

his means the in the first case the force will be in the direction of the relative velocity
while in the second it is normal to the area.

To see how the forces on panels works, we looked at the forces on the three shapes
shown in Figure 41.

Comparison of Wind/Current Force
Bodies Used

Event 1.0

Figure 41: Definitions of Shapes

Figures 42 - 44 show the surge, sway, current force and the magnitude of the force
(‖ f ‖) on each of the shapes. Here, the force is computed using the MOSES Method,
-AF ENVIRONMENT NO.

The thing to notice here is that the force depends on the shape; i.e. by integrating
the force over the the body you get a dependence of the force on the shape of the
piece. For head and beam currents, one gets a force of π/4 times that of the square.
Thus if you want half that of a square you need to specify .5/.785 for the for Cx and
Cy.

One should notice that the directional behavior for the wind is identical to the current
so only one of them is presented here. Now, notice that the magnitude of the force
on both the tube and the square are independent of angle. This is a direct result of
the fact that the x and y projected areas are the same and the force computation
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Figure 42: Current Surge Force
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Figure 43: Current Sway Force
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Figure 44: Current Force Magnitude
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Figure 45: Current Force Magnitude By Method
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method. Figures 45 compares the magnitude of the force for the two computation
methods.

Here one can see that the ”projected area” method produces a larger force for head-
ings other than head or beam, but it does not take into account that the ”drag”
coefficient is different for a wedge than for a flat surface.

We have been discussing these forces in the context of regulatory ”recepies”. In
other words, the mathematics above is consistent with traditional ”rules” such as
ABS, API, or DNV. The next three figures Figures 46 - 48 show comparisions of
the surge, sway, and yaw forces on a tanker computed by #TANKER and by the
panel integration method. The #TANKER method is based on the data published
by published by OCIMF [2] which was based on model tests.
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Figure 46: Comparision of Tanker Current Surge

The interesting thing here is that while the surge force comparison is quite poor, the
comparison for the other two components is quite reasonable. This simply demon-
strates that it is not realistic to expect to capture complex interaction with a simple
receipe.

While we have been talking about ”current force”, the forumlae depend on the relative
velocity. As a result, we should expect some damping to be produced. Figures 49 -
?? show examples of the damping produced by the panel integration ”current” force
computation.
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Figure 47: Comparision of Tanker Current Sway
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Figure 48: Comparision of Tanker Current Yaw
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Figure 49 shows a comparison of the roll response of a barge for two values of wave
steepness (the same case considered in Section IX above). In one case, we have only
Tanaka damping while in the other we have only damping produced by the panel
integration method. The comparison here is remarkable. This is especially true since
the ”Tanaka” damping is supposed to be a result of eddy formation at the bilge and
the panel integration is simply due to pressure drag over the bottom. This is quite
important. It says that if one uses panel integration to capture current force, then
he should either set Cz to zero or set other roll damping to zero.

TANAKA,  Steep=20
CS 1 1 1, Steep=20
TANAKA,  Steep=75
CS 1 1 1, Steep=75

Comparison of Roll RAO  with TANAKA vs -CS_CURR
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Figure 49: Comparision of Damping with TANAKA

Figure 50 and figure 51 show a comparison of the heave and roll response of the
BALDER (same condition as that reported in Section X above) using #TUBE for
damping and using the panel integration method. Again, the agreement is excellent
and the panel integration method does not require defining any ”special” elements.

Finally, figure 53 shows a comparison of the heave decay of the BALDER with com-
puted panel integration damping, computed with 3% critical damping, and Model
Tests. Again the comparison is quite good with the model tests showing more damp-
ing than the other two methods.
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Figure 50: Comparison of Damping with #TUBE in Heave
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Figure 51: Comparison of Damping with #TUBE in Roll
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Figure 52: Heave Decay
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XIV. PIPELAYING

In this section, we will consider the results of a static pipelaying analysis. In partic-
ular, will will compare the results from MOSES to those of the OFFPIPE program.
The pipe used here is a steel pipe, 12 inches diameter, 0.75 inch thickness, laid in 1600
meters of waterdepth. The figure 53 shows both the axial force and bending moment
along the pipe resulting from each program. The two sets of curves agree well except
for the moment between 2800 meters and 2970 meters. This is probably due to the
fact that OFFPIPE’s results used a nonlinear moment-curvature relationship while
MOSES used linear ones.

FIGURE   1
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Figure 53: Comparison of axial force and bending moment along the pipe
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XV. QUALITY ASSURANCE PROCEDURES

There are two major factors which influence the applicability of a given piece of
software: the validity of the initial program, and the care taken in its maintenance.
When a new feature is added to the program, it is normally checked by examples
which can be verified by manual computations. The major question is how to assure
that during the maintenance process, something is not done to upset the initial results
within the proven range of validity. This section describes a set of procedures which
minimize the introduction of unintentional errors. One should notice that the goal
of these procedures is to maintain a status quo in the results of the programs, not to
insure the applicability of the results to any given situation.

Company Structure

As a small scientific software vendor, Ultramarine has a corporate structure with the
integrity of its software as its basis. The corporate president has direct control of
every step of the development, maintenance, and distribution of all software. All
of the personnel involved with these activities are graduate engineers with degrees
in the area for which they develop software. Thus, each are allowed considerable
discretion in development and maintenance of our products. This freedom, however,
is controlled by the Release Administrator who is responsible for the integrity of each
release of Ultramarine’s software. It is primarily the duties of this individual which
are discussed below.

Programming Standards

Research has shown that many errors can be eliminated by a set of programming
standards, and that the particular ones adopted are not as important as the existence
of a standard. We have adopted most of the well accepted standards. While it is
difficult to quantify, we feel that the most important factor in software integrity is
the overall architecture of the product. To use currently popular jargon, systems
should be designed “top down” and written with “structure”. The two elements of
our standard which we feel are next in importance are the typing of all variables and
the initialization of all data in only one location. The first of these, along with a
good compiler, eliminates most of the typographical errors. The second mitigates
the possibility of forgetting to change it in all places.

Corrective Action

To allow us flexibility in making major changes and enhancements we maintain two
complete copies of all of our software. One copy is considered a “development” copy,
while the second is a “release” copy. Major changes are made only in the develop-
ment copy, and consequently the only changes made to the release copy are those

MOSES Verification Page 51



necessary to correct reported problems. The Release Administrator is responsible for
responding to all reported problems. If corrective action is necessary, the action is
undertaken with his direction. It is his responsibility to document all changes in the
release copy of the software. This documentation includes:

1.) The discoverer of the problem,

2.) A description of the problem,

3.) The programs affected by the problem, and

4.) The changes in the code to fix the problem.

The revision number of all programs is incremented in the last digit whenever a change
is made in the release copy. Two types of verification are performed for problem fixes.
The first is to execute a problem which exhibited the error to ascertain if the problem
is, in fact, fixed. For most problems, this is all that is done. In some cases, however,
the entire verification tests for a given program may be run to ensure that the fix has
no other impact.

New Versions

Whenever all of the major modifications have been made for a release, the devel-
opment copy of the source is “migrated” to the release world. This migration is
performed by the Release Administrator. When a migration occurs, the revision
number is changed in the first digit past the decimal, or if the changes in a release
are particularly dramatic, the number to the left of the decimal is incremented. It
is during this migration process that quality control procedures become increasingly
important, as one must be sure that all problems fixed in the previous release copy
will be fixed in the new version.

The first step in this procedure is to archive a tape containing all of the data for
the old release. The next step is that the source of the current release is machine
compared with the original source of that release. Since any discrepancies between
these two sources should have been documented as a “problem fix”, the list of prob-
lem fixes is compared to the true source changes to ensure that all alterations have
been documented. Next, the source code of the new release version is compared, by
machine, with the source code of the previous version. The results of this compari-
son are checked against the documented changes to make sure that all changes in the
previous release have been made in the new one. This machine comparison is then
archived.

Verification
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The final step in the migration procedure is to execute a set of standard verification
problems. These verification data sets were designed to test each major option of
the application, and currently there are a total of over one hundred problems which
comprise the verification suite. The results of the verification runs are compared, by
machine, with the results of the same test executed on the previous release. Any
differences in the results are justified considering the changes in the release, and the
comparison of the results is filed for reference. After any discrepancies between the
results of the verification runs have been resolved, the process repeats.

Documentation

The documentation for each application is maintained in a manner similar to the
source code. At the end of a release cycle, the documentation is revised so that it
accurately reflects the new version of the program. After the manuals have been
revised, a copy of each one is proofread, and any errors are corrected. The manuals
are then printed for the release. Since the only changes which can be made during a
release cycle are to fix errors, a set of documentation is valid for any version of the
program which has the same revision numbers to the left of the decimal, and for the
first digit to the right of the decimal. The revision number for the documentation is
printed on the bottom of each page of the documentation.

Releases

Our software is actually supplied to a site on a “release tape”, the format of which
varies with the type of computer at the site. In fact, for some installations, the release
will be supplied on a media other than tape. Each tape will contain:

1.) All of the modules necessary to install the programs at the site,

2.) A new manual for each program on the tape, and

3.) Our verification data sets for each program on the tape.

Along with the tape, a document describing the changes made in this release is
enclosed. The actual process of writing release tapes has been automated. One of
our products, URSULA, keeps a database of which customers have which programs,
and when instructed, a tape tailored for that site will be written. URSULA also
keeps a database of the date the tape was sent and the revision number of the products
on the tape.
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