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l. INTRODUCTION

OTTO is a program which simulates the ocean tow of a jacket on a barge. lts
primary objective is to provide the engineer with an analytical tool to eval u-
ate the stresses in both the jacket and in the barge which result from the

various seastates that the tow might encounter.

The purpose of this document is to describe the theories and assumptions made
by the program. It is not the purpose of this paper to fully develop all of
the theory; for example, the elastic modelling of the jacket/barge structure
is accomplished via standard finite element techniques which are widely known,
and which will thus be only briefly outlined. In areas where the theory is
not widely known or universally accepted (e.g., joint type classification),

more detail will be given.



[ .A ANALYSIS OVERVIEW

The basic function of OTTO is to perform a stress analysis of a barge/jacket

combination subject to a seastate. Thus, the governing equation of motion is

M—A+~Ké:§+§+g (1-1)
where

A = structural deflections

l(, M = structural stiffness and mass matrices

g = seal/structure interaction forces

8 = dead loads

12 = other applied loads (e.g., wind, current, etc.)

Next, suppose that we can decompose A into two parts

A=x+ U (1-2)

where x is the rigid body motion of the system and u is the elastic deformation.

In OTTO we further suppose that

1.) The acceleration of the elastic deformation can be
neglected,

~

2.) The seal/structure forces, g, are independent of the
deformation, u, and

3.) The jacket is not in the water, so that the sea
forces act only on the barge.

Then, writing x in terms of the six rigid body degrees of freedom (DOF),

(Si, i=1,6, we get

x=x8 (1-3)

£

where each of the six columns of x represent the structural displacement, 4,

due to a unit rigid body motion of the system. Combining (I-1) through (1-3)

yields



v d o+ (1-4)
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which can be decomposed into two separate problems: one of rigid body dynamics

and one of a static stress analysis. Thus, we obtain

rj§=é+§ (1-5)
Ku=8+d+k-Hgd (1-6)
where
Hexlh
g=x '3 (1-7)
"
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The first equation is a six by six system to be solved for rigid body response,

§, and the second equation is solved for the elastic deformation, u.



I1. VESSEL RIGID BODY MOTIONS

As was outlined in Section I, the stress analysis is based upon loads derived
by first considering the response of the barge/jacket combination as a rigid

body. In this section, we will briefly outl ine the method of determining the
forces which the sea imposes on the structure. Since we have assumed that the

jacket is not in the water, the problem is then that of a floating vessel.



I1.A SEA/STRUCTURE INTERACTION

The analysis of the interaction of a floating body with the surrounding fluid
has a lengthy history. In particular, Salvesen, Tuck, and Faltinsen [1]pre-
sent not only a concise statement of the current state of the art, but also a
reasonable history of the subject. Most of the following is based on this
work. For purposes of calculating the seal/structure interaction, we will assume
that the barge can be considered to be composed of a collection of rigid ele-
ments, each of which is prismatic. We will also assume that the flow induced
by the motion of the vessel (element) parallel to the longitudinal axis is neg-
1 igible. Mathematically, this can be shown to be the case provided the wave
lengths of generated waves are short in comparison to the length of the barge.
The assumption of no induced parallel flow allows us to reduce the mathematical
problem from a three dimensional one to a sequence of two dimensional ones. In
addition, we will suppose

1.) The motions of each element are small,

2.) The fluid is incompressible and invisid, and

3.) The flow is irrotational.
These assumptions are standard in the study of ship motions, and they allow us

to reduce the problem to one of linear potential theory.

In particular, for each element of the structure, the force due to interaction
is obtained by integrating the pressure, p, over the submerged portion of the

element. Here, the pressure is given by the linearized Bernoulli equation

P:-p(%%+9(:2) (11-1)



where pis the mass density of the fluid, gc is the acceleration of gravity,

and ¢ is the velocity potential for the flow which must satisfy

V26 = 0, on the exterior of the element, (11-2)
2% 90
—— + g =- =0, on the free surface, (11-3)
2 c 9z
at
V& = n =v, on the submerged surface of the section, (1 1-4)
and an appropriate radiation condition. These conditions simply state that the

velocity potential must satisfy LaPlace's equation, the linearized free surface
condition, the velocity of the flow at each point on the element must equal the
velocity of the section at that point, and the generated flow must behave as an

outgoing wave at infinity.

As is traditionally the case, we will consider the prob em in the frequency do-
main. In other words, suppose that the velocity potent al has the form

b= Re (ge") (11-5)
where 1 = /-——1—, and ¢ is a complex potential which is independent of time. At

this point, it is convenient to decompose the prob em into seven pieces. These

pieces correspond to a wave induced by a motion of each degree of freedom, and

by the scattering of the incident wave by the vessel. Thus,
/ 1
¢ =¢, 1 ¢.6, (1 1-6)
j=1 JJ

where ¢, is the incident wave potential

¢, = 9N exp [-k(z + ix cosB+ iysingl,

(11-7)

2
kK =2
I

For clarity, in this section, we will use ind cial notation when referring
to components of tensors.
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)

= the angle that the incident wave makes with
the X-axis,

T = the incident wave height,
{(11-7 cont.)
(Sj:the motion of each degree of freedom,
67= n s
and each potential 3), satisfies
V. + n = iwn, (11-8)
~ ~ J

where n is the unit outward normal to the surface, and n. is the generalized
- J

normal given by

(n , N, N ) =n

1 2 3 ~
(n4, n5, ns) =r x n, and (11-9)
n =Vd <+ n

7 ~Ta o~

r being the position vector.

If the preceding results are combined with (li-l1), and the results integrated

over the vessel surface, we find that the generalized force on the element can

be expressed as

7
_ ; . dA -
g, = -0 Sf Liw (o +j:% $.6.) + gzl n; dA (11-10)

or, if this is combined with {}}-8),

g. = -p [ zn. dA - npiw [{® + ¢ ) ni dA
i : i < o ;
6 (ri-11)
+ow® § U V6. - n o, dAl ¢,
j=t s 74~ J

11-4



Notice that the first appears to be constant. This is not, however, the case.

Instead, it can be shown that, for small motions,

-pg_ js zn, dA = s, - RU.cSJ. (11-12)

where si is the generalized force on the vessel due to buoyancy with the vessel
in its mean position, and Rn" is a matrix of hydrostatic restoring coefficients.
The second term does not depend on the motion, but is linear in the wave ampli-

tude. This is the force on the vessel due to the presence of waves, and we will

denote it as

q; = “iwo [(6g + ¢7) n. dA . (11-13)
S
Finally, since (b;is complex, we will define
= w (V6. . n n, dA), and
Hji Re J‘“d)J non.
111 4)
= L . nn, dA).
0y = Im G5 ij nong dA)

Combining (11=12) through (11-14), we find that the total force on the vessel can

be represented as

6
g. =s. +ng. - ) [-w?H..+ iwd..+ R..]G, (11-15)
i i e J1 ji Ji J
j=1
which is the desired result. Unfortunately, the problem remains to solve for the
seven potentials, ¢j’ so that the quantities in (I11-15) can be evaluated.

While there are several techniques available which will solve for the seven un-
known potentials, the one which appears to be the most satisfactory is the one
developed by Frank [2]. His technique is based on the results of John [3]. In
part icular, except for the set of discrete frequencies, the solution of each of

ii-5



our problems can be expressed as

. .G d | i-16
¢>J:£QJ s (1 i-16)

where Q. is the distribution of source intensities, and G is the potential of a
J
pulsating source along the surface. Since this representation satisfies all the

conditions of our problem except (1l-B), the final solution is obtained by solv-
ing the integral equation

v - fQ. G ds] . n = iwn. . (11-17)

s J J

To solve this equation, Frank assumes that the source intensities can be approx-
imated as constants over segments of the section. He also employs the assump-
tion that the longitudinal flow is negligible so that the three dimensional prob-
lem can be reduced to a sequence of two dimensional ones. The result is a set of
algebraic equat ons which can be solved for the source intensities, and hence,
by employing (I -16), the velocity potentials. These results can then be used in

(1 1-15) to obta n the seal/structure interaction forces.



I'1.B FREQUENCY DOMAIN ANALYSIS

The results obtained in the previous section for the seal/structure interaction
forces were in the frequency domain, while the formulation of the structural
problem was in the time domain. While it is possible to transform the frequency

domain forces to the time domain via an inverse Fourier transform, it is more

efficient, if possible, to consider the structure response in the frequency do-
main. Thus, we first combine (1-5) with ({1-15)to obtain

E§ = s +ng - [-w™H + iwD + R_S + d (11-18)
then we take the Fourier transform of (11-18) to obtain

[-w? (M + H) + iuD + R _(S_* = ﬂq* (11-19)
where

E: structural mass matrix

L—l = hydrodynamic added mass matrix

= hydrodynamic damping matrix

D

§ = complex motion

g = complex linear wave forces
N = the wave height
where a * is used to indicate a Fourier transform. Note that in (11-19) above,

we have taken R to be evaluated about the mean vessel position, so that s+d=0,

and § is the dynamic response relative to a position of static equilibrium. If
the vessel is not in equilibrium, then errors will result when computing the dy-

namic response.



Notice that q:‘:, the wave force, is complex and depends upon the wave direction,
6. Thus, if (I 1-19})is solved with n=1, the result will be a complex vector,
6*, which depends upon both the wave frequency and direction. This vector is
cdl led the response amplitude operator, or RAO, and it represents, of course,
the response of the structure to a unit amplitude regular wave of frequency w

and heading 8. The actual response of the structure to this wave is obtained

from the RAO as

* iw
S(t)= Re [6 (w,8)e t} (11-20)
) * . . * i(,\}(i} .
By replacing 6 with its polar form, léi ]e ,Where ¢ is a phase angle, we can
wr i te
0 e+
S{ty=Re [ [6 |e (e +4); (11-21)
Of course, since (I i-19) is linear, the response of the structure to a sea com-
posed of many regular waves can be obtained from superposition. In other words,

if the sea can be represented by the sum of N waves 711, {w,,8.), then.the structure
J J 33

response is given by

8(t) = Re | Enj(wj,ej) § (w;,8)] (1 1-22)

RAO's of Inertia Loads

Once the vessel RAQ's are obtained, the RAQO's of the motions at other points and
of the dynamic forces acting on bodies attached to the vessel can be easily ob-

tained. To accomplish this, we will define

A

5 = (x,6) (11-23)

11-8



where x is the vector of RAO’s of translation of the origin, and 6 is the vector
of RAO’s of rotation. Again, assuming small angles, the RAO of the motion of a

point r from the origin can be computed as

x_ = x+0xr (1 1-24)
~f - ~ ~
where X denotes the vector cross product. To obtain the RAO’s of the velocity
and acceleration of the point, one simply multiplies (11-24) by iwand (iw)?

respectively. The RAO’s of the motions of a point can be used to obtain the RAQO’s
of the harmonic forces which act on a body whose center of gravity is located at

the point by

(11-25)

where

f, t = the RAO’s of the force and torque on the body

M = the mass of the body

gC = the acceleration of gravity

l = the inertia matrix of the body

¢ = a vector whose components are (8, ,-6;,0)

These forces and torques are represented in the vessel system, and this is the
reason for the second term in the equation for the force. This term is a contri-

bution from the weight of the body as the vessel pitches or rolls.

-9



I1.C SPECTRAL ANALYS | S

Since the response of the structure can be obtained from (11-22) once the sea
is described, it would appear that the problem is solved. Unfortunately, we
rarely have enough data to adequately describe the sea as required by (11-22).
Instead, what is normally reported is the sea spectrum. The spectrum of the
sea is a function which yields a measure of the energy in the sea as a function

of frequency and direction. In other words, if the sea spectrum is given as

s{8,w), then
B, W,

A = [ ] s(8,w)dw d6 (1 1-26)
61 U)l

is a measure of the energy in the sea which has frequency between w; and w,,

and direction between 87 and 6,.

For simpl ici ty, suppose that the sea is uni-directional, i.e., that all waves
come from a single direction. Then, mathematically, the sea spectrum is de-

fined in terms of the Fourier transform of the autocorrelation of the wave amp-

1 itude as
s = 2n [ [ n()nt + 1) ag e T dr (11-27)

If this relationship is inverted,

n(e)(t + 1) dt = [ s(w) e T do (11-28)
/ /
and for T = 0,

o = [ n%(t) dt = [ sw) dw (11-29)

so that the root mean square of the wave amplitude is simply the area under the

spectrum.

I 1-10



The s mple relationship {(11-29) is quite important since it has been empirically
- estab ished that the peaks in a sea follow a Rayleigh distribution. In other

words the probability, P, of a peak exceeding N, is given by

P (ne) = ([ 5 exp(-£2/202)dE, o r
no 02

(11-30)

P(n>ng) = e x e

Notice that this probability depends only on 0 which can be obtained from the

spectrum. Notice also that since our original problem is linear, the peaks in
the structure response should follow the same distribution as the input.. Thus,
if we could obtain the spectrum of the response, we could simply use (11-30) to

— obtain the probability that a given response will be exceeded.

Therefore, the goal is to obtain the spectrum of the structural response which

is simply related to the sea spectrum by

s, (@) = [x"(w)]? s(w) (11-31)
Finally, for each degree of freedom of the structure, the RMS can be found by

computing the area under the output spectrum, and the probability that any given

value will be exceeded can be found from {(I11-30)

I 1-11



I, STRUCTURAL ANALYS | S

In Section Il we outlined the method of solving the response of a rigid body
subjected to a long-crested, unit amplitude wave train which yields the solu-
tion to (I-5). To determine the stresses in the structure, it is then neces-
sary to solve equation (1-6) which yields the elastic deformation, u, of the

structure which corresponds to the same wave train.

The primary difficulty in doing this is the inherent incompatibility between
the hydrodynamic model and the structural model. This is most evident in the
technical difficulties in deriving the structural wave loads, J, in (1-6).

The next two sections discuss the steps taken in OTTO to resolve the two models.



I 11 .A STRUCTURAL MODELLING

OTTO employs standard finite element methods in modelling the elastic charac-
teristics of the jacket and barge. The structure is idealized as a number of
elastic elements which are interconnected at a finite number of nodes. Each
node may have up to six degrees of freedom, those being three orthogonal trans-
lations and three orthogonal rotations, The structural system is then said to

have N = 6 * NN total degrees of freedom, where NN is the total number of nodes.

The elements may be of three different types: beams, plates, or restraints.

By assembling the stiffness characteristics of the elements, the system stiff-

ness matrix is formed, where

Ku=F (11 1-1)
and

K = the N x N stiffness matrix

u = vector of nodal displacements

F = app!l ied forces

1112



I11.6 COMPUTING THE STRUCTURAL WAVE LOADS

In Section Il we discussed the calculation of the wave loads which act on a

vessel. In order to perform a stress analysis, it is necessary to transfer
these loads to the structure. In doing so, we must reconcile two distinct
models -- the hydrodynamic model and the structural model. Sources of incom-
patibil ities are

1.) The hydrodynamic model is based upon the shape
of the wetted surface, whereas the structural
model depends upon structural framing; and
2.) Structural models may be highly simplified,
even to the point of a single beam at the ves-
sel centerl ine.
Thus, each node on the hydrodynamic model does not, in general, have a corre-
sponding node on the structural model to receive the load. Some type of map-

ping scheme must therefore be developed in order to transfer loads from the

hydrodynamic model to the structural model.

In OTTO this is accomplished by taking the total load on a strip as the point
of organization. The total load on a strip is found by integrating (I t-10)

over the wetted surface of the strip. This complex load is called F, where

= Fer + lESI (rtt-2)

F
~5
where FSR and FS( are the real and imaginary parts of the load. These loads

are to be mapped to a set of joints which are specified by the user when de-
fining the shape of the strip. Since any number of nodes may be contained in
this list, a least square technique is employed to obtain a distribution of

the loads. If we limit consideration to the real load, and partition

Tsr

this load into forces and moments as Fsr = (R,M), then what we seek is a set

1113



of loads which minimize the function

[fjiz (t11-3)

1

o
i
ft ~1ZZ

J
where N is the number of nodes which are to receive the load, and FJ is the force

vector at the jth node. These nodal loads must satisfy the following equations

N .
y FJi = R, (111-4)
j= '
and
N . .
b <) oy (111-5)
j=1
where rJ is a vector from the vessel origin to the jth nodal point To solve
this problem, we rewrite {{1{-5) as
N ] N i N . .
C =P E e AL F -R I+, -] dxEd ow (116
3= j=1 =t
where %, and A, are LaGrange multipliers. Minimizing (111-6) yields a set of
equations which is solved for the F . This procedure js repeated for the imagi-
nary part, ESI'

111-4



I 11 .C RIGID BARGE IDEALIZATION

In OTTO, there is an option for treating the barge as a perfectly rigid body

during the structural analysis in cases where the engineer feels that this

idealization is warranted. In this case, the solution of (I-6) is simplified

as follows: the structural wave loads, §, are set to zero, and the structural

displacements, u, involve only jacket node points. Thus,

+k-Mx 8 (111-7)

tay

Ku =

is solved for the jacket displacements, u. In constructing the right hand side

of this equation, we will attack the problem on an element by element basis
rather than formally constructing the rigid body transformation, x. Note that

S can be decomposed as § = (X,(D)V\h ere X are the translations and ¢ are the Euler

angles. The acceleration at some point, p= (x, vy, z),is then expressed from

kinematics as

pEx*oxprox (¢ xp . (118

The inertial load on a member is computed by lumping one-half the member mass at

each node, then multiplying by -p above.

[115



IV.  SPECTRAL STRESS ANALYSIS

Having solved for the complex elastic deformation, u, of the system, it is then
necessary to compute the stress RAO’'s. These stress RAO’'s are the basis for eval-
uating the fatigue life of the structure, and hence, it is necessary to incorpo-
rate empirical stress concentration factors (SCF's) when computing the stress
RAO's. The following section details the development of the stress RAOQO’s, and

the computation of the cumulative damage ratios (COR's).



{V.A CALCULATION OF MEMBER STRESS RAO'S

For a given wave case, i.e., period and direction, the member end complex re-
act ions are computed. Next, for each of the N points around the circumference
of a member, three complex normal stresses are determined: stress arising
from axial load, stress arising from in-plane bending, and stress arising from
out of plane bending. These stresses are called OA’ O], and OO’ and may be

written as

R |
OA OA + lOA
o, = s+ io! (1v-1)
_ R |
OO = OO + IOO

The stress RAO at a given point is determined by factoring each of the above
SiXx stress components together with stress concentration factors (SCF's) based

upon results of Kuang, et al [4], and Smedley [5].

The sequence of calculations to be performed at a joint are as follows:

1.) Determine all braces which lie in a plane. For
each brace in this plane, compute the complex
axial load, and in-plane and out-of-plane bending
moments at the chord end of the brace. These are
called P, MI’ and MO’

2.) Based upon the real parts of P, MI’ and MD, deter-

mine the classification of the joint for that

load path. The classification will be one of the
following designations: 1) K; 2) T (or Y); or
3.) X (cross joint). Repeat this classification

based upon the imaginary parts of P, MI’ and MO.



3.) Determine the stress concentration factors, SCF,
for both the real and imaginary load path class-
if ications. The SCF's are calculated based upon
the formulae given in Table IV-I, and the equa-
tions below, where SCFA are used for stresses due

to axial load only, and SCF, and SCFO are used

for direct stress resulting from in-plane and out-
of-plane moments only. Note that Kuang’'s results
are used for K and T joints, and Smedley’'s are
used for X joints.

MAX (T3, T5) ; for K joint

SCFA = £ MAX (T1, T2) ; for T joint (1V-2)
133 * MAX (T1, T2) + 1; for X joint
MAX (T13, T14) ; for K joint

SCF, = { MAX (T11, T12) ;for T joint (1v-3)
1 .33 % AMAX (T11 , T12) ; for X joint
r‘I‘\/IAX (T15,T17); for Kjoint where d/D<0.55

. o 5>
SCF, = < MAX (T16, T18); for Kjoint where d/D>0.55
v

Same as Kjoint; for T joint (1v-4)

1.33 * above value; for X joint

L

4.) For each stress point around the circumference of
the brace, calculate the complex axial stress OA

and the complex direct stresses resulting from in-
plane and out-of-plane moments, 0, and O,.

| 0
5.) The total stress RAO for each point is then calcu-
lated from
RAOZ (g) = [(oR scrh s gserl s R SCFR)2+
A A i 0 0 (v - 5)
| | | ! ) Iy 2
(aA SCF, + OlSCFI+ 9 SCFO) ]

where the superscripts R and | refer to the real
and imaginary parts, respectively.



TABLE 1V-1

FORMULAE FOR ESTIMATING SCF IN TUBULAR JOINTS

-.808 e~1.2(d/D)3 1.333

)—.057 Sin1.69l4e

T1 =1.177(T/D) (t/7) (b/L

_ - 3 -
T2 = 2.784(7/D) -5 e 1.35(d/D) (¢/T)(D/L) 12 sin]‘9“e

-.666

T3 = .949(T/D) (/D) 799 (e/m)"- 0% (g/p)- 067 11521
15 = 825(1/0) 157 (a/p) " M (¢ym)+ 56 (g/0) 058 o1 M8 sin o
T11 = .l+6>3(T/l))"6 (d/o)"ol+ (t/T)'86 sin'576

8 38 21

T12 = 1.109(1/0) 23 (d/D) 3% (/1) 3% sin"?'s

).06

T 13 =1.4(1/0) 38 @ (/1) sin %

T 14 =2.827(1/D) 32 (¢/T)" 3" sin" %8

)-1.0114 (d/D)'787 (t/T)'889 Sin1.557e

Ti5 = .L465(T/D
T 16 =.199(1/0) O (asp) 819 (/1) 889 401557
T17 =.8O3(T/D)_'852 (d/D) '8O’(t/T).5h35in2.033e

To1 o8 =.42(7/0) 852 (a/0) 281 (c/1) 53 51020334

where
D, T = diameter and thickness of chord
d,t = diameter and thickness of brace
L = length of joint can (assumed 10 ft.)
g = gap distance (assumed 2 in.)

V-4



{V.B CALCULATION OF CUMULATIVE DAMAGE RATIOS (CDR'S)

The damage incurred in a given seastate, s, is denoted CDRS. Thus, it fol lows
that, for a transit consisting of NS different seastates, the total cumulative

damage ratio, CDR, is

NS
CDR = ) CDR (1V-6)
s=1

CDR is computed as follows: First, note that the stress RAO at a given point
S

in the structure is denoted SRAO (w,@).Thus, CDRSfor this stress is

T 5 P(r) '
COR_ =T_A.\7{ N(r) d T (1v-7)
where
T = Time duration of the seastate
TAV = average period for stress variation
P(r) = probability density function of the stress range
N(r) = average number of cycles to failure at a given

stress range, r.

The above formula is, of course, a continuous form of Miner’s rule for cumulative

damage. The terms are computed from the fol lowing equations:

y =2 RO - e2)]? (1v-8)

€2 = (mgm, - m3)/(mym,) (1v-9)

P(r) =ﬁe'r2/8m° (1V-10)
;

N(r) = Ar 3 (1v-11)

and the spectral moments, rr|1 are defined as

6+1/2 ©
m o= [ w |SRAO (w,8)] 25
6=0-1/2 w=o0

b (W) cos”(6-8) dwdd (1vV-12)

iv-5



where

HH

@]

the wave spectrum

mean wave heading
spreading function
wave frequency

wave heading



IV.C JOINT CLASSIFICATION

Note that the stress RAO depends upon the SCF, which s in turn dependent upon
the joint classification, i.e., K, T, or X. That the joint classification is
dependent upon the geometry of the joint and also the load path is pointed out
in API-RP 2A [6], but the method of classing the joint is not spelled out unam-
biguously. This section is intended to define this classification in a form

suitable for implementation.

We begin by making the following definitions:

= IV‘]
s (SCFK,SCFT,SCFX) ( 3)

ay) (IV-14)

@ = (ay, op, oy

where SCFK, SCFT, and SCFX are the stress concentration factors, defined in Sec-

o and a, are components of the joint classification factors.

ti V. d
ion IV.A, and a 7

K)
Thus, the SCF to be applied to a given brace is

SCF = ¢ . S (1v-15)

Note that the idea here is that a joint may transfer loads in more than one mode

depending upon the load path.

Next, we make some additional definitions:

| = the transverse resultant load on the ith member
on the “left” side of the chord

r. = the transverse resultant load on the ith member
on the “right” side of the chord

where we consider only those members that, taken with the chord, lie in the same

plane. Further, we define
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+ . .
L = the sum of all ]i which are positive

L = the sum of all liwhich are negative
+ . ..
R = the sum of all ri which are positive
R = the sum of all riwhich are negative
and
L=L" + L
R =R+ +R (1V-16)
V =R + L

The above parameters form the basis for classing a jo nt. The decisionsto be
made will be based upon the following criteria:

1.) The examples shown in [6]will yield the same
resulting classifications.

2.) A member will be classed as K if possible.

3.) Loads which are transferred from one side of
the chord to the other side will be evenly
distributed among ail members involved.

4.) The classification will be well-behaved, i.e.,

small changes in load path will produce small
changes in «.

The majority of decisions are based upon L, R, and V. If we restrict our atten-
tion to the braces on the left, then, if L = 0, no shear is transferred through
or to the chord from this side, and therefore, all members on the left are class-
ed K, so that o = (1 ,0,0). If L #0, then the situation is more complex, and
some of the members will be classed as T or X depending upon the total shear, V.
The classifications made in OTTO are summarized in Table 1V-2 for cases where

L > 0. Of course, all other cases can be constructed from the basic cases in

this table.
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TABLE 1V-2

JOINT CLASSIFICATION FACTORS, a = (OLK,QT,OCX)
Case 1 Case 2 Case 3 Case 4
L=0 L>0; V=20 L>0; V>0 L >0; V<O
0" |(1,0,0) (1,0,0) (1,0,0) (1,0,0)

.>0 (1,0,0) [1T-a

0, (L/LN] | -ar, (L/LY), 00 | [1-(ava,), | (L) /7] v/l ]

X’ T T X

1. < 0 means all braces with transverse load are less than zero.
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V. MAXIMUM STRESS ANALYS IS

In addition to fatigue failure criteria, it is sometimes important to consider
the stress in the structure due to a single event, such as a severe seastate
of short duration. In this case, a strength criteria may take precedence over

a fatigue criteria.

In OTTO, this problem is addressed by allowing the treatment of the structure
statically. By this, we mean that a snapshot is taken of the barge/jacket
combination in the time-domain, and a static analysis is performed. Advantages
of this approach are

1.) The non-linear interface between the jacket and
barge can be treated properly (i.e., gap elements).

2.) Static forces, such as wind, current, etc., can
be treated.




V.A TIME DOMAIN LOADS

For time domain results in irregular seas, the wave loads and rigid body accel-
erations must be constructed. Since (I 1-19) is linear, the response of the
structure to a sea of many regular waves can be obtained by superposition.
Thus, if the sea can be represented by a sum of N regular waves, n.{(w.,8.),

J J3J
then the response of any given quantity, Q, may be expressed in terms of its

RAO's, Qx, by
N x
ot) = Re [ )} 7. (w.,8.)0 (w.,0.)] (v-1)

If the irregular wave height is expressed similarly as

N i (w.t+9.)
n(t) = Re [ ) |n. | eI it b (v-2)
j=1 J

then the amplitudes are found from the wave spectrum, S, by

e2 wz
[njl =2 [ [ S(w,6) duwdd (v-3)
01 w,

where the phase angles, ¢., are chosen arbitrarily, and the limits of integra-
J

tion are
Wy = (U)J.‘U)J_])/Z
(v-4)
6, = (6.-06. .)/2
Jo -
6, = (ejﬂ - ej)/z



V.B GAP ELEMENT

During the transit of a jacket, the jacket is only partially connected to the
barge, i.e., it is welded to the barge at only a few tie-down locations. At
other locations along the launchway, the jacket is free to slide along the
launchways or even lift off the launchway completely. OTTO has the ability to
analyze this problem by using a specialized element that is called a gap ele-
ment. In this section, we will outline the general features of this element,

and the method of solution.

Statement of the Gap Problem

The problem in general is that of two or more structures wh ch are hooked to-
gether in some fashion. Here, “in some fashion” is taken to mean gap elements.
A gap element is deal ized as two nodes in space that are constrainedtogether

by the ability of the element to transmit internal loads.

rigid rod

rigid rod tl——gap

Figure V-I

Gap Element Coordinates
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The X-axis of the member is taken as its axial degree of freedom; the Y and Z7Z-

axes are perpendicular to this axis. The features of the element are now des-

cribed.

Let the vectors UA’ and uB, contain the deflection, in the element local system

(X,Y,Z), of the two nodes * A and * B. Thus, the axial “stretch” of the element

becomes

U - u

1g 1, (Vv-5)

Since the element is rigid when the gap is closed, we can write the following

constraint equation

U - u > o (Vv-6)

and the element must generate internal loads to satisfy (V-Z). Thus, it is seen
that this element is non-linear in that its “stiffness” depends upon whether or

not the gap is closed.

Equations of Constraint

The equilibrium equation involving nodes * A and * B is

Kx=F (V-7)

Where

x
1

deflections of the two nodes, in local system

T
1

forces at the nodes
K = stiffness matrix
Now, if the gap element is closed, no al 1 of the xi are independent degrees of

freedom since equation {V-6) must be satisfied. If we partition the deflection

vector x so that

V-4



x o= (xx ) (v-8)

where x_  are the independent degrees of freedom, and x4 are the dependent de-

grees of freedom, then equation (V-7) may be written as

The constraints among the ><i may be wr ten as

which can be used to augment the equilibrium equation so tha

~ - —~ —
T
G .
K|| id i FI
“ii Kag T < “d =4 d 7 (V-10)
6 -1 0 qd 0
(Y ~— — -~

where g,is a set of forces required to satisfy equations (V-7) and (V-9). Solv-
~ U

ing (V-10) yields

Kix, = F (V- 1)
- F -

4 = i X+ Kaa 2a 7 L4 (V-1 2)
where

P T

K =T KT (Vv-13)

F=F +TTF, (V-1 4)
and

|

T={ - - (v-15)

~ G
where | is the identity matrix whose order is the same as that of x,.
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Solution Algorithm

The algorithm for solving the gap problem is outlined n the following

1.) Form the K and F matrices as in Equation (V-7).

For each gap element, g (g =1...., number of gaps),

initialize the constraint matrix, tg,

2.)

and the inter-

nalloads, as follows:

This effect-

X 6 identity matrix.

where | is the 6

% 6

ively forces each gap to a “closed” position.

3.) The system constraint matrix is calculated as

:ZBgtg

gaps < <

-

where B transforms a vector from the local (x,y,z)

system to the global coordinate system.

4.) Solve the constrained system of equations for the

displacements, x, and constraint forces, qd,

44

TTKT xi:TTF
x=T2<i
99 = R %t Kaa Xq T g

If the solution is admissable, that is, if all

5.)

gap elements are in compression or have zero loads,

and all displacement bounds are met, then a sol

If not, then generate a new

matrices, tg,

ution has been found.

and re-

set of element constraint

turn to Step 3.
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