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I. INTRODUCTION

One of the most interesting aspects of Offshore Engineering is assessing the structural
integrity of a body subjected to a seaway. While there are two ways of viewing the
problem, in the frequency domain and in the time domain, most people adopt one
method to the exclusion of the other. This is unfortunate since each has situations
in which it is clearly superior to the other.

Here, we present a brief overview of the problem with an emphasis on the frequency
domain, which is the method most often neglected.
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II. THE MODEL OF THE SEA

The behavior of the sea is stochastic. By this, we mean that one rarely is given enough
information to completely define its behavior. Instead, what is normally reported is
the sea spectrum. The spectrum of the sea is a function which yields a measure of
the energy in the sea as a function of frequency and direction. In other words, if the
sea spectrum is given as S(θ, ω), then

A =
∫ θ2

θ1

∫ ω2

ω1

S(θ, ω) dω dθ (II.1)

is a measure of the energy in the sea which has frequency between ω1 and ω2, and
direction between θ1 and θ2. Mathematically, the sea spectrum is defined in terms of
the auto-correlation of the wave amplitude as

S(ω) = 2π
∫ +∞

−∞

[∫ +∞

−∞
η(t) η(t+ τ) dt

]
e(−iωτ) dτ (II.2)

for a unidirectional sea. Likewise, one can express the temporal nature of the sea
with given spectrum as

η(t) = Re
[ N∑
j=1

ηj e
(iωjt+φj)

]
(II.3)

where
|ηj|2 = 2

∫ ω2

ω1

S(ω) dω (II.4)

and there are not restrictions on the parameters φj. In other words, there are many
seas which will yield the same spectrum.

It is the lack of uniqueness of a sea corresponding to a given spectrum which creates
difficulties. If one is to assess the integrity of a body subjected to a given storm, he
has many sea samples from which to choose. There are basically two alternatives:
check several samples, or consider the problem stochastically. Here, by stochastically,
we mean that instead of seeking the solution, we seek a solution which has a specified
probability of being exceeded. For the sea, it has been empirically established that
the peaks reasonably follow a Raleigh distribution. In other words, the probability,
P , of a peak exceeding η0 is given by

P (η > η0) = exp
(
−η

2
0

σ2

)
(II.5)

where

σ2 =
∫ +∞

−∞
η2(t) dt =

∫ +∞

−∞
S(ω) dω , (II.6)

Thus, if we know the spectrum, we can find any probability of exceedence.

While either of the above two approaches yield viable results, our primary purpose
here will be to investigate the probabilistic approach.
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III. THE DYNAMICS PROBLEM

For our purposes, we will suppose that:

1. The motions of the body are small,

2. The fluid flow in the sea is inviscid and irrotational,

3. The acceleration of the deformation is negligible, and

4. The sea/structure interaction forces are independent of the deformation.

Under these premises, the equations of motion of the body can be written as

d

dt

[
I ẏ
]

+ K y = ĝ + d̂ + k̂ (III.1)

where y defines the configuration of the body, I is the inertia matrix, K is the stiffness
matrix, ĝ is the force on the body due to the sea, d̂ is the weight, and k̂ is any other
force on the body.

Now, let us define a decomposition

y = Vx + u (III.2)

where x is a rigid motion of the body, u is the deformation of the structure, and V
is a transformation which transforms the rigid motion of the reference point into a
rigid motion at each degree of freedom. Using this decomposition results in

d

dt

[
IVẋ + Iu̇

]
+ KVx + Ku = f , (III.3)

where f is simply the net force on the body. If we now employ the assumptions
concerning small motions and negligible deformation acceleration, (III-3) becomes

IVẍ + KVx + Ku = f . (III.4)

We will now limit our attention to systems where the stiffness matrix, K, contains no
connections to ground. Mathematically, this restriction can be expressed as

ż ·Ku = 0 (III.5)

for any deformation u and any rigid motion z. The equations of motion can now be
decomposed into two systems

VT IVẍ = VT f ,Ku = f − IVẍ . (III.6)
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This result shows that, within the limitations imposed, the original problem can be
viewed as a rigid body dynamics problem and a structural analysis problem with the
addition of the rigid body inertia loads.

For convenience, we will rewrite the first of (III.6) as

Īẍ = f̄ = ḡ + d̄ + k̄ (III.7)

where the quantities with a superposed - are the total quantities for the body.
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IV. THE HYDRODYNAMICS PROBLEM

A basic ingredient in the equations of motion is the sea/structure interaction force.
To evaluate this force, one integrates the pressure over the submerged surface of the
body. Here, the pressure is given by the linearized Bernoulli equation

p = −ρ
(
pφ+ gz

)
(IV.1)

where ρ is the fluid density, g is the acceleration of gravity, z is the depth of submer-
gence, and φ is the velocity potential for the flow. The conditions on φ are

52 φ = 0 on the exterior of the body,
∂2φ

∂t2
+ g

∂φ

∂z
= 0 on the free surface,

∇φ · n = ẏ · n on the body surface, (IV.2)

and an appropriate initial condition. Notice that the body boundary condition is
expressed in terms of the velocity and hence, the hydrodynamic problem is formally
coupled to the dynamics problem.

At this point, it is convenient to decompose the velocity potential as

φ = φi + φd + Φ · ẋ (IV.3)

where all φ’s satisfy LaPlace’s Equation and the free surface condition, φ satisfies a
radiation condition, and, on the body boundary

∇φi · n = ∇φd · n ,

and
∇Φ · n = T n (IV.4)

Here, T is a matrix which transforms the velocity at the reference point into velocities
at each point on the body surface. Notice that by this decomposition, we have
decoupled the hydrodynamics problem from the dynamics problem. Also, φi is the
incident wave potential which is assumed to be known, φd is the diffraction potential,
and φ is the radiation potential.

Now, the force on a portion of the body, P , can be expressed as

g = −ρ
∫
∂P

(
pφ+ gz

)
ds ,

or
(IV.5)
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g = Hẍ−Dẋ− ρ
∫
∂P

(
gz + pφi + pφd

)
Tn ds

where

H = ρ
∫
∂P

(
Φ⊗ ∂Φ

∂n

)
ds

D = ρ
∫
∂P

(
pΦ⊗ ∂Φ

∂n

)
ds (IV.6)

Of course, H and D are called the added mass and damping matrices of the part of
the body.

While we have obtained a representation of the force, the problem remains to actually
solve for the potentials. While this solution is not our concern, it should be mentioned
that this can be accomplished in several ways. For many bodies, it has been found
that an approximation of neglecting the free surface condition and approximating
the radiation potentials yields satisfactory results. This particular method is called
Morison’s Equation. Alternatively, several techniques have been developed for solving
the problem more precisely. These techniques are called diffraction theories.

Before leaving the question of hydrodynamics, let us rewrite the expression for the
force on a part as

g = −Hẍ−Dẋ + i + b (IV.7)

where

i = −ρ
∫
∂P

(
pφi + pφd

)
T n ds

is the wave exciting force, and

b = −ρg
∫
∂P
z ds (IV.8)

is the buoyancy.
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V. FREQUENCY DOMAIN ANALYSIS

Traditionally, the motion of bodies subjected to a seaway has been studied in the
frequency domain. In other words, one supposes that there is a mean position, x̄,
and one looks for a solution x∗ which is the motion of the body about the mean in a
regular sea of unit amplitude and given heading and period. In other words,

− ω2Īx∗ = f̄(x̄)
∂ f̄(x̄)

∂x
x∗ (V.1)

where we have symbolically shown the dependence of the force on the configuration.
If we use the various representations in the above, there results

[−ω2(̄I + H) + iωD + R]x∗ = i∗ (V.2)

where i∗ is the wave exciting force for the period and heading, and

R =
∂f(x̄)

∂x
(V.3)

Notice that the solution to (V-2) is a complex vector. Using this decomposition in
the structural equations yields

Kū = f(x̄)
Kū∗ = f(x̄∗)− ĪVx∗ (V.4)

so that we can have one structural load case for the mean and two for each wave
heading and period.

Notice that since our equations are linear, superposition holds. Thus, suppose that
we have a mean solution uo and several solutions for headings and frequencies. Then,
if the wave amplitude is given by

η(t) =
∑∑

ηij e
(iωit+k cos θj)

the structural response will be

u(t) = u0 +
∑∑

uij ηij e
(iωit+k cos θj) (V.5)

Alternatively, we can define the deformation spectrum as we did the sea spectrum,
and we find that

Su = |u∗|2Sη
In other words, the deformation spectrum is related to the sea spectrum by the
deformation response operators. In a like manner, we can define the spectrum of any
quantity linearly related to the deformations. Once we have the spectrum, we can
then assess the probability of given values being exceeded as was discussed in Section
II.
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VI. FATIGUE

The assessment of fatigue is normally expressed by a cumulative damage ratio. In
other words, by Miner’s Rule

CDR =
T

t

∫ ∞
0

P (r)

N(r)
dr (VI.1)

where CDR is the cumulative damage ratio, T is the duration of a process, t is the
average period for a stress cycle, P is the probability density function of the stress
range, and N is the average number of cycles to failure at a given stress range. Notice
that if a body is subjected to several different sea states, then the total damage ratio
can be obtained by adding the CDR’s for each sea state.

Notice that the frequency domain is an ideal place to consider the fatigue problem. As
discussed previously, once the deformation response operators have been computed,
the stress spectrum is simply

Ss = |S∗|2Sη (VI.2)

where S∗ is the stress response operator and Sη is the sea spectrum. Now, using the
Raleigh distribution

P (r) =
r

4m0

exp
(−r2

8mo

)
,

t = 2π[
m0

m2

(1− ε2)]
1
2 ,

ε2 = (m0m4 −m2
2)/m0m4 , and

mj =
∫ 2π

0

∫ ∞
0

Ss(ω, θ)ω
j dω dθ (VI.3)

Thus, the cumulative damage is easily computed from the stress response operators.
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VII. MEMBER FAILURE

To assess the integrity of a given member, one normally employs a criteria which
is a nonlinear function of the various element stresses. Because of this nonlinearity,
one cannot form a ”spectrum of the criteria” and some approach other than using
the Raleigh Distribution on the spectrum must be employed. One obvious approach
would be to create a time domain sample. Here, one has a deterministic set of stresses
and he can proceed as normal. The difficulty with this approach is deciding upon
the number of deterministic cases to consider. If too many are chosen, the cost can
become prohibitive; if too few, there is serious doubt as to whether a situation close
to the critical has been investigated.

An alternative to the time domain synthesis is to construct a set of element stresses
as

s = sm + sign(sm)|sp| (VII.1)

where sm is the mean stress and sp is the stress which has a given probability of
being exceeded. While this will definitely yield something which can be used in a
deterministic failure criteria, it is not obvious that it will give answers which are not
overly conservative.

To compare the two approaches, the small jacket shown in Figure 1 was analyzed
using both methods. First, a stress analysis was performed in the frequency domain
with four headings and seventeen periods (137 load cases). A time domain sample
of the total inertia load on the structure was synthesized for twelve sea states, and
the time when any force had a maximum or minimum were chosen to perform both
member and joint checks. This resulted in 114 cases to be considered. Alternatively,
the same twelve sea states were used to generate stresses according to (VII-1). It was
found that the stochastic code check ran in 20% of the computer time required for
the time domain samples. The corresponding ratio for joint checks was 37%.

When performing these code checks stochastically, the exceedence criteria employed
was 1/100. Thus, one would expect that there would be some cases where the time
domain results would be greater. This was found to be the case for 11% of the
members and 14% of the joints. A more important comparison, however, is for those
members and joints where the code check ratio was greater than one. For joints,
one out of 24 was governed by the time domain; for members, one out of eighteen.
Perhaps the most important comparison, however, is between the magnitudes of the
two sets of results. For joints, the maximum difference between the two ratios was
1.57 for the stochastic vs. 1.48 for the time domain. For members, it was 8.550 for
stochastic vs. 8.017 for the time domain.
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